Consecutive Stability Constants in Solution

- In aqueous solution, formation of a complex generally proceeds by steps involving displacement of water molecules in the first hydration sphere.
- Equilibrium constants K_1 , K_2 , ..., K_n associated with addition of each ligand are called *consecutive stability constants*.

$$\begin{aligned} &[\text{Cu}(\text{H}_2\text{O})_6]^{2+} + \text{NH}_3 \rightleftharpoons [\text{Cu}(\text{NH}_3)(\text{H}_2\text{O})_5]^{2+} + \text{H}_2\text{O} & K_1 = 2 \times 10^{+4} \\ &[\text{Cu}(\text{NH}_3)(\text{H}_2\text{O})_5]^{2+} + \text{NH}_3 \rightleftharpoons [\text{Cu}(\text{NH}_3)_2(\text{H}_2\text{O})_4]^{2+} + \text{H}_2\text{O} & K_2 = 4 \times 10^{+3} \\ &[\text{Cu}(\text{NH}_3)_2(\text{H}_2\text{O})_4]^{2+} + \text{NH}_3 \rightleftharpoons [\text{Cu}(\text{NH}_3)_3(\text{H}_2\text{O})_3]^{2+} + \text{H}_2\text{O} & K_3 = 1 \times 10^{+3} \\ &[\text{Cu}(\text{NH}_3)_3(\text{H}_2\text{O})_3]^{2+} + \text{NH}_3 \rightleftharpoons [\text{Cu}(\text{NH}_3)_4(\text{H}_2\text{O})_2]^{2+} + \text{H}_2\text{O} & K_4 = 2 \times 10^{+2} \end{aligned}$$

- Successive stability constants decline through the series, such that $K_1 > K_2 > ... > K_n$.
 - In the first step there are six sites for NH₃ substitution, but in the reverse step there is only one site for H₂O substitution; $K_1 \propto 6/1$.
 - In the second step there are five sites for NH₃ substitution, but in the reverse step there are two sites for H₂O substitution; $K_2 \propto 5/2$.
 - By similar reasoning we predict $K_3 \propto 4/3$ and $K_4 \propto 3/4$.

Ratio	Predicted	Observed
K_1/K_2	(6/1)/(5/2) = 2.40	5
K_2/K_3	(5/2)/(4/3) = 1.87	4
K_3/K_4	(4/3)/(3/4) = 1.78	5

- Agreement between predicted and observed ratios is remarkably good, considering that predictions are based only on statistical factors.
 - ✓ Statistical factors appear to be the main cause of the trend.

Cumulative Stability Constant

• The product of consecutive stability constants is the *cumulative stability* constant, β_n .

$$\beta_n = \prod_{i=1}^n K_i$$

- When the overall equilibrium lies to the right the product complex is said to be *stable*.
- When the overall equilibrium lies to the left the product complex is said to be *unstable*.

Example:
$$[Cu(H_2O)_6]^{2+} + 4NH_3 \Rightarrow [Cu(NH_3)_4(H_2O)_2]^{2+} + 4H_2O$$

$$\beta_4 = (2 \times 10^{+4})(4 \times 10^{+3})(1 \times 10^{+3})(2 \times 10^{+2}) = 1.6 \times 10^{+16}$$

• $[Cu(NH_3)_4(H_2O)_2]^{2+}$ is a very stable complex.

Stable/Unstable and Labile/Inert

- "Stable" and "unstable" refer to the thermodynamics of complex formation (e.g., K, β).
- "Labile" and "inert" refer to the kinetics of complex formation.
- A complex whose formation equilibria are established rapidly is *labile*.
- A complex whose formation equilibria are established slowly is *inert*.

Example: $[Cu(NH_3)_4(H_2O)_2]^{2+}$ has a large β_4 and its equilibria are established rapidly; therefore, the complex is stable and labile.

As a "rule of thumb", if the half-life of a complex in a substitution reaction is less than one minute, it is labile.¹

¹H. Taube, *Chem. Rev.*, **1952**, *50*, 69.

Stability Constants and Thermodynamic State Functions

• The stability constant for a complex is related to ΔG , ΔH , and ΔS of its formation by

$$\Delta G = -RT \ln \beta_n = \Delta H - T\Delta S$$

- The larger β_n is, the more negative (favorable) ΔG will be.
- Entropy plays an important role.
 - The more positive ΔS is, the more negative ΔG will be, and the greater β_n will be.
 - Entropy is largely responsible for the greater stability constants observed for chelates, compared to complexes of unidentate ligands with the same metal ion.

Chelate Effect - Entropy Factors

• The *chelate effect* is the name given to the general observation that chelate complexes have higher stability constants compared to similar unidentate ligand complexes.

Example: $[Cd(NH_2CH_3)_4]^{2+}$ vs. $[Cd(en)_2]^{2+}$

$$[Cd(H_2O)_6]^{2+} + 4NH_2CH_3 \rightleftharpoons [Cd(H_2O)_2(NH_2CH_3)_4]^{2+} + 4H_2O \quad \log\beta_4 = 6.6$$

 $[Cd(H_2O)_6]^{2+} + 2en \rightleftharpoons [Cd(H_2O)_2(en)_2]^{2+} + 4H_2O \quad \log\beta_2 = 10.6$

- ✓ For both, ΔH should be about the same, because the enthalpy change is due mainly to the change in bond strengths between Cd–O and Cd–N, so the difference in β values must be due principally to entropy differences.
- ✓ For $[Cd(NH_2CH_3)_4]^{2+}$, the reaction equation has equal numbers of particles on both sides (5), so $\Delta S \approx 0$.
- ✓ For $[Cd(en)_2]^{2+}$, there are three (3) particles on the left and five (5) on the right, so $\Delta S > 0$.
- \checkmark The greater positive entropy change for formation of the chelate complex results in a more negative ΔG and a larger β value.
- In general, chelates have an entropy advantage over similar unidentate ligands.

Chelate Effect - Kinetic Factors

• We can make a mechanistic argument for the chelate effect by comparing the following idealized mechanisms and the associated rate constants for each step.

✓ Unidentate case:
$$M + L = \frac{k_a}{k_b} ML$$

$$ML + L \stackrel{k_c}{=} ML_2$$

✓ Chelate case:
$$M + L - L = \frac{k'_a}{k'_b} M - L - L$$

$$M-L-L \stackrel{k'_c}{=} M \stackrel{L}{\downarrow}$$

- ✓ For the first step in each case we can predict $k_a \approx k'_a$ and $k_b \approx k'_b$.
- ✓ But for the second steps $k_c < k'_c$ random vs. directed second substitution $k_d \ge k'_d$ chelate bond breaking same or harder
- ✓ Stability constants are defined in terms of the rate constants as

$$\beta_{\text{uni}} = \frac{k_a k_c}{k_b k_d} \qquad \beta_{\text{chel}} = \frac{k'_a k'_c}{k'_b k'_d}$$

- ✓ From the relationships among the *k* values, $\beta_{uni} < \beta_{chel}$.
- In general, chelates have a kinetic advantage over comparable unidentate ligands.

Labile vs. Inert

- Stable/unstable are thermodynamic terms, and labile/inert are kinetic terms, which can be applied in all possible combinations to various complexes.
- $[Co(NH_3)_6]^{3+}$ is <u>unstable</u> with respect to aquation but <u>inert</u>. $[Co(NH_3)_6]^{3+} + 6H_3O^+ \xrightarrow{slow} [Co(H_2O)_6]^{3+} + 6NH_4^+ \qquad K \approx 10^{+25}$
- ✓ [Ni(CN)₄]²⁻ is <u>stable</u> with respect to exchange with labeled CN⁻ but <u>labile</u> because the equilibrium is established quickly.

$$[Ni(CN)_4]^{2-} + CN^{*-} \xrightarrow{\text{fast}} [Ni(CN)_3CN^*]^{2-} + CN^- \qquad K \approx 10^{-22}$$

- Most first-row transition metal complexes are labile, but Cr^{3+} (d^3 , S = 3/2) and low-spin Co^{3+} (d^6 , S = 0) are usually inert.
- Inert octahedral complexes tend to be those with highest CFSE; viz., d^3 , low-spin d^4 d^6 .
 - ML₆ complexes of both d^3 (${}^4A_{2g}$) and low-spin d^6 (${}^1A_{1g}$) are immune from Jahn-Teller distortions and therefore can be perfect O_h .
 - ML₆ d^3 has CFSE = $-(6/5)\Delta_0$ and low-spin d^6 has CFSE = $-(12/5)\Delta_0$ + 3P.
- $d^7 d^{10}$, with filling of e_g^* levels, are labile.
 - These configurations tend to have large Jahn-Teller distortions and/or low CFSEs.
 - d^7 , d^9 , and d^{10} cases are more labile than d^8 .
 - d^8 has a ${}^3A_{2g}$ ground state, which is immune to Jahn-Teller distortion.
 - With strong-field ligands, d^8 may be square planar, often being inert.

Substitution Mechanisms

• Ligand substitutions follow the general stoichiometry

$$ML_5X + Y \rightleftharpoons ML_5Y + X$$

- Kinetic studies of the rates of such reactions provide data that suggest the detailed mechanisms by which substitution occurs.
- Two extreme models can be postulated:
 - ① dissociation (D)
 - 2 association (A).

Dissociation Mechanism $(D) - S_N 1$

$$ML_5X$$
 $\xrightarrow{k_1}$ $ML_5 + X$ fast
$$ML_5 + Y \xrightarrow{k_2} ML_5Y$$
 slow
$$Rate = k_2[ML_5][Y]$$

- The rate-determining step involves addition of Y to a CN5 intermediate formed by a rapid equilibrium in the first step.
- Assuming a steady state in [ML₅], we can write

$$\frac{d[ML_5]}{dt} = 0 = k_1[ML_5X] - k_{-1}[ML_5][X] - k_2[ML_5][Y]$$

• Solving for $[ML_5]$, we have

[ML₅] =
$$\frac{k_1[\text{ML}_5\text{X}]}{k_{-1}[\text{X}] + k_2[\text{Y}]}$$

• Substituting into $Rate = k_2[ML_5][Y]$ gives

Rate =
$$\frac{k_1 k_2 [\text{ML}_5 \text{X}][\text{Y}]}{k_{-1} [\text{X}] + k_2 [\text{Y}]}$$

• If product formation is fast $(k_2 >> k_{-1})$, or if the system has very large [Y] (>>[X]), then rate becomes first-order in [ML₅X]; i.e.,

$$Rate \approx k_1[ML_5X]$$

• Thus, the S_N1 mechanism is first-order in [ML₅X].

Association Mechanism $(A) - S_N 2$

$$ML_5X + Y \xrightarrow{k_1} ML_5XY$$
 fast
$$ML_5XY \xrightarrow{k_2} ML_5Y + X \text{ slow}$$

$$Rate = k_2[ML_5XY]$$

• Applying a steady-state approximation for [ML₅XY] we have

$$\frac{d[ML_5XY]}{dt} = 0 = k_1[ML_5X][Y] - k_{-1}[ML_5XY] - k_2[ML_5XY]$$

• Solving for [ML₅XY] we obtain

$$[ML_5XY] = \frac{k_1[ML_5X][Y]}{k_{-1} + k_2}$$

• Substituting into $Rate = k_2[ML_5XY]$ gives

Rate =
$$\frac{k_1 k_2 [\text{ML}_5 X][Y]}{k_{-1} + k_2} = k [\text{ML}_5 X][Y]$$

where $k = k_1 k_2 / (k_{-1} + k_2)$.

• Thus, the S_N^2 mechanism is second-order overall; i.e., first-order in $[ML_5X]$ and first-order in [Y].

Interchange Mechanism (I)

- It is too simplistic to assume that a first-order rate law implies $D(S_N 1)$ and a second-order rate law implies $A(S_N 2)$.
 - Most substitution reactions probably involve a mechanism that is intermediate between these extremes, a mechanism called *interchange* (*I*).
- In an interchange mechanism the intermediate involves an association between the original ML₅X complex and the attacking Y ligand.
 - The Y ligand remains outside the coordination sphere of ML₅X, unlike the S_N2 mechanism, so the intermediate is not seven coordinate.

$$\begin{array}{c|c} L & L \\ \downarrow & \downarrow \\ X & \downarrow & \downarrow \\ L & L \end{array}$$

$$ML_5X + Y \xrightarrow{k_1} ML_5X \cdot Y$$
 fast $ML_5X \cdot Y \xrightarrow{k_2} ML_5Y + X$ slow

• Assuming high $[Y] \approx [Y]_o$, it can be shown² that the rate is given by

Rate
$$\approx \frac{k_2 K_1 [M]_o [Y]_o}{1 + K_1 [Y]_o}$$

where $[M]_o = [ML_5X]_o + [ML_5X \cdot Y]$ and $[Y]_o$ are initial concentrations, and $K_1 = k_1/k_{-1}$.

- At high [Y] and $K_1[Y]_o >> 1$, the rate is first-order in [M] $_o \approx [ML_5X]$.
- At lower [Y] the rate is second order.

²Miessler & Tarr, 4th ed., section 12.3.2, p. 448.

Variations on I

- Two minor variations on the I mechanism are I_d (dissociative interchange) and I_a (associative interchange) interchange.
- If breaking the M–X bond is more important, the mechanism is I_d .
- If bond formation between ML_5X and Y is significant, the mechanism is I_a .
- Difference between I_d and I_a is subtle and does not necessarily correspond to whether the observed rate law is first or second order.
- If the rates of a series of comparable substitution reactions are most sensitive to the identity of X, the leaving ligand, then the mechanism is more probably I_d .
- If the rates of a series of comparable substitution reactions are most sensitive to the identity of Y, the attacking ligand, then the mechanism is more probably I_a .

Substitution Reactions in Solvent Water

- Many substitution reactions occurring in solvent water may have first-order kinetics regardless of whether their initial steps are primarily *D* or *A*.
 - For example, this occurs if aquation is a precursor rate determining step.

$$ML_5X + H_2O \xrightarrow{D \text{ or } A} ML_5(H_2O) + X$$
 slow $ML_5(H_2O) + Y \to ML_5Y + H_2O$ fast

- If D, $Rate = k[ML_5X]$.
- If A, $Rate = k[ML_5X][H_2O]$, but with solvent water $[H_2O]$ is constant and $Rate = k'[ML_5X]$.
- Both mechanisms lead to apparent first-order kinetics in solvent water.

Factors Favoring D or I_d

- For most octahedral complexes, steric factors inhibit formation of a CN7 intermediate, which suggests a dissociative mechanism (D or I_d) is more plausible.
 - Even cases showing second-order kinetics may not be *A* for this reason.
- For example, aquation of the ammine-halide complexes $[Co(NH_3)_5X]^{2+}$ is second order with a first-order dependence in $[OH^-]$.
 - Although this might suggest A, that appears unlikely.

$$[\text{Co}(\text{NH}_3)_5\text{X}]^{2+} + \text{H}_2\text{O} \rightarrow [\text{Co}(\text{NH}_3)_5(\text{H}_2\text{O})]^{3+} + \text{X}^-$$

Rate = k_1 [Co(NH₃)₅X²⁺] + k_2 [Co(NH₃)₅X²⁺][OH⁻]

- If $k_2 >> k_1$ the rate is approximately $Rate \approx k_2 [Co(NH_3)_5 X]^{2+} [OH^-]$.
- From the second-order kinetics, this appears to be *A*, but it is more likely an alternative mechanism called S_N1CB, where "CB" stands for "conjugate base."

S_N1CB Mechanism

• The postulated S_N1CB mechanism involves the following steps:

$$\begin{split} &[\text{Co}(\text{NH}_3)_5\text{X}]^{2+} + \text{OH}^- \xrightarrow{K} [\text{Co}(\text{NH}_3)_4(\text{NH}_2)\text{X}]^+ + \text{H}_2\text{O} \\ &[\text{Co}(\text{NH}_3)_4(\text{NH}_2)\text{X}]^+ \xrightarrow{D} [\text{Co}(\text{NH}_3)_4(\text{NH}_2)]^{2+} + \text{X}^- \\ &[\text{Co}(\text{NH}_3)_4(\text{NH}_2)]^{2+} + \text{H}_2\text{O} \xrightarrow{\text{fast}} [\text{Co}(\text{NH}_3)_4(\text{OH})]^{2+} + \text{NH}_3 \\ &[\text{Co}(\text{NH}_3)_4(\text{OH})]^{2+} + \text{H}^+ \xrightarrow{\text{fast}} [\text{Co}(\text{NH}_3)_5(\text{H}_2\text{O})]^{3+} \end{split}$$

• The second step, which is rate determining, is $D(S_N 1)$, for which

$$Rate = k \left[Co(NH_3)_4(NH_2)X^+ \right]$$

But

$$K = \frac{[\text{Co(NH}_3)_4(\text{NH}_2)X^+]}{[\text{Co(NH}_3)_5X^{2+}][\text{OH}^-]}$$

(No [H₂O] because water is solvent.)

• Solving *K* gives

$$[Co(NH_3)_4(NH_2)X^+] = K [Co(NH_3)_5X^{2+}][OH^-]$$

• Substituting into the expression for *Rate* gives

$$Rate = kK [Co(NH_3)_5 X^{2+}][OH^-]$$

This is the same as the observed rate

$$Rate = k_1 [\text{Co(NH}_3)_5 \text{X}^{2+}] + k_2 [\text{Co(NH}_3)_5 \text{X}^{2+}][\text{OH}^-]$$

when $k_2 >> k_1$; i.e.,

$$Rate = k_2 [Co(NH_3)_5 X^{2+}][OH^-]$$

- Although steric factors favor *D*-type mechanisms for octahedral complexes, square planar ML₄ complexes are not so inhibited.
 - For square planar ML₄ complexes, an associative (*A*) mechanism, in which a CN5 intermediate is formed, is plausible.

Trans Effect

• Substitution of square planar complexes, such as PtLX₃, leads to a mixture of *trans* and *cis* isomers.

• The rate law is

$$Rate = k_1[PtLX_3] + k_2[PtLX_3][Y^-]$$
 $k_2 > k_1$

- Suggests two paths, where the first term may be pseudo-first-order due to excess solvent acting as an attacking group.
- The ratio of *trans* and *cis* isomers is found to vary with the ability of L to act as a *trans*-directing ligand.
- The increasing order of *trans*-directing ability is $H_2O < OH^- < py \approx NH_3 < Cl^- < Br^- < l^- < NO_2^- < PR_3 \approx SH_2$ $<< CO \approx C_2H_4 \approx CN^-$
- The effect is kinetic rather than thermodynamic.
- Two factors are cited to explain the effect:
 - ① Weakening of the Pt–X bond *trans* to the directing ligand;
 - 2 Stabilization of the presumed CN5 intermediate.

M-X Bond Weakening

- For ligands at the left of the series, weakening of the *trans* Pt–X bond may be most important.
- The *trans*-directing ligand polarizes the metal ion, inducing a slight repulsion for the leaving ligand in the *trans* position.

weakened by induced repulsion

• The more polarizable the L ligand, the better *trans*-director it is; e.g., $I^- > Br^- > Cl^-$.

π -Acceptor Ligands

- The strongest *trans*-directors are good π -acceptor ligands; e.g., CO, C_2H_4 , CN⁻.
- Assuming an A (S_N 2) mechanism, substitution involves a trigonal bipyramidal transition state.
- The *trans* intermediate (activated complex) is more favorable for π -acceptor ligands, because it permits π -delocalization in the trigonal plane.
 - Stabilizing the reaction intermediate lowers the activation energy, E_a , for the reaction.
 - In the *cis* intermediate, L lies above the trigonal plane, which decreases its ability to stabilize the activated complex through π delocalization.

Synthetic Use of the Trans Effect

- The synthetic utility of the *trans* effect can be illustrated by the selective production of *cis* or *trans* Pt(NH₃)₂Cl₂, using the greater *trans*-directing ability of Cl⁻ relative to NH₃.
- ✓ To make cis-Pt(NH₃)₂Cl₂, start with [PtCl₄]²⁻:

- In the second step, the greater *trans*-directing ability of Cl⁻ causes preferential substitution of NH₃ in the *trans* position to one of the existing Cl⁻ ligands, resulting in the *cis* isomer.
- ✓ To make trans-Pt(NH₃)₂Cl₂, start with [Pt(NH₃)₄]²⁺:

In the second step, the greater *trans*-directing ability of Cl⁻ causes preferential substitution of Cl⁻ in the *trans* position to the first Cl⁻, resulting in the *trans* isomer.

Electron Transfer Reactions Outer Sphere Mechanism

- Transition-metal complexes can engage in redox reactions with one another, primarily by one of two mechanisms: *outer-sphere* and *inner-sphere*.
- In an *outer-sphere reaction* the coordination spheres of the reacting complexes remain intact.
 - Outer-sphere reactions are extremely fast.
 - Redox occurs before ligand substitution can take place.

Example:
$$[Fe^{II}(CN)_6]^{4-} + [Ir^{IV}Cl_6]^{2-} \rightarrow [Fe^{III}(CN)_6]^{3-} + [Ir^{III}Cl_6]^{3-}$$

inert inert

- As the charge on the metal increases, the M–L bond distance decreases.
 - The effect is most pronounced when electrons are removed from an e_{o} * MO; e.g.,

$$\text{Co}^{2+} (t_{2g}^{5} e_{g}^{2}) \rightarrow \text{Co}^{3+} (t_{2g}^{6}) + e^{-}$$

high-spin low-spin
long M–L shorter M–L

- Electron loss from e_g^* stabilizes the complex.
- The outer-sphere mechanism is certain to be the correct one when *both* species participating in the reaction undergo ligand-exchange reactions more slowly than they participate in the electron transfer process.³

³F. A. Cotton, G. Wilkinson, *Advanced Inorganic Chemistry*, 4th ed., Wiley, NY, 1980, p. 1206.

Electron Transfer Reactions Inner Sphere Mechanism

- *Inner-sphere* mechanisms generally proceed in three steps:
- ① Substitution resulting in two complexes being linked through a bridging ligand.
- 2 Electron transfer, sometimes with ligand transfer.
- 3 Separation of products.
- This is sometimes called a ligand-bridged mechanism, because of the formation of the bridged intermediate.
- Inner-sphere mechanism requires that one of the participating species have a ligand capable of functioning as a bridge.
 - For example, H₂O and NH₃ cannot function as bridging ligands, but Cl⁻ and CN⁻ can.
- Inner-sphere redox is slower than outer-sphere.

Example of Inner Sphere Redox

$$[Cr^{II}(H_2O)_6]^{2+} + [Co^{III}(NH_3)_5Cl]^{2+} \xrightarrow{H^+/H_2O} -NH_4^+$$

 d^4 high spin (labile) d^6 low spin (inert)

$$[Cr^{III}(H_2O)_5Cl]^{2+} + [Co^{II}(H_2O)_6]^{2+}$$

$$d^7 \text{ high spin (labile)}$$

Mechanism:

$$\begin{split} [\text{Cr}^{\text{II}}(\text{H}_2\text{O})_6]^{2+} + [\text{Co}^{\text{III}}(\text{NH}_3)_5\text{Cl}]^{2+} &\to [(\text{H}_2\text{O})_5\text{Cr}^{\text{II}}\text{...}\text{Cl}\text{...}\text{Co}^{\text{III}}(\text{NH}_3)_5]^{4+} + \text{H}_2\text{O} \\ && \qquad \qquad \qquad \qquad \qquad \qquad \downarrow e^- \, \text{transfer} \\ [(\text{H}_2\text{O})_5\text{Cr}^{\text{III}}\text{...}\text{Cl}\text{...}\text{Co}^{\text{II}}(\text{NH}_3)_5]^{4+} \end{split}$$

$$[(H_2O)_5Cr^{III}\cdots Cl\cdots Co^{II}(NH_3)_5]^{4+} + H_2O \rightarrow [Cr^{III}(H_2O)_5Cl]^{2+} + [Co^{II}(NH_3)_5(H_2O)]^{2+}$$

Co(II) complexes are labile, so [Co^{II}(NH₃)₅(H₂O)]²⁺ undergoes rapid aquation:

$$[\text{Co}^{\text{II}}(\text{NH}_3)_5(\text{H}_2\text{O})]^{2+} + 5\text{H}_2\text{O} \rightarrow [\text{Co}^{\text{II}}(\text{H}_2\text{O})_6]^{2+} + 5\text{NH}_3$$

- ✓ This reaction cannot be explained as an outer-sphere mechanism followed by Cl⁻ substitution, because adding labeled Cl*⁻ to the solution yields no labeled product.
 - This is expected, because all Cr(III) complexes are inert to substitution.